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Canonical formulation of shallow water waves? 
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Department of Mathematics, Bosphorus University, Istanbul, Turkey 
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Abstract. We introduce a new potential and use it with the velocity potential to construct 
a new variational principle for long surface waves in shallow water. Applying Dirac’s 
theory of constraints, we cast it into canonical form and obtain an explicit expression for 
the exact Hamiltonian. 

1. Introduction 

The equations governing surface gravity waves on water were given a variational 
formulation by Luke (1967), and subsequently Zakharov (1968), Broer (1974) and 
Miles (1977) have cast it into Hamiltonian form. In Luke’s Lagrangian only the 
velocity potential enters as an independent field, while the domain of integration of 
the action is restricted to yield the boundary conditions at the free surface and the 
bottom. In the Hamiltonian formulation of this theory the velocity potential at, and 
the displacement of, the free surface turn out to be canonically conjugate variables. 
However, it has not been possible to write the Hamiltonian in closed form using these 
canonical variables and a great deal of work has been done to obtain approximate 
expressions (cf Miles 1981). It is the purpose of this paper to present an entirely new 
formulation of the equations of motion for the special case of long waves in shallow 
water in terms of potentials which finally enables us to construct an explicit expression 
for the exact Hamiltonian. 

We start with the well known formulation of the full set of equations governing 
long waves in shallow water as a system of conservative equations (Stoker 1957, 
Whitham 1974). In 1 + 1 space and time dimensions these equations can be expressed 
as the integrability condition for two potentials which for consistency satisfy a pair of 
coupled, first-order, nonlinear partial differential equations. One of them is the familiar 
velocity potential subject to Bernoulli’s law and the other one appears to be new. The 
equations of motion for surface waves can be derived from a new variational principle 
where the action is a functional of these potentials. As Seliger and Whitham (1968) 
have emphasised, it is crucial to introduce potentials for various phenomenological 
fields in order to construct variational principles in fluid mechanics. The difference 
between our approach and that of Seliger and Whitham lies in the fact that we have 
introduced the potentials directly for the conservative equations themselves rather 
than using Clebsch velocity potentials. The new variational principle is, once again, 
an expression of the principle of stationary pressure. The action is now defined over 
an arbitrary domain and independent variations with respect to the two potentials 
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yield all the equations of motion. The Hamiltonian formulation of this theory requires 
the use of Dirac’s theory of constrained systems (Dirac 1964) because the new 
Lagrangian is degenerate. We find that there are two second class constraints in this 
problem, and applying Dirac’s theory construct the total Hamiltonian in terms of the 
potentials and their canonically conjugate momenta. Thus we obtain the canonical 
formulation of surface waves in shallow water. 

2. Potentials 

The theory of shallow water waves is well known. The continuity and Euler equations 
of hydrodynamics in one space dimension can be written in the form 

(la,  b )  

where U and c are the velocities of the fluid and of the disturbance with respect to 
the fluid respectively. These quantities are functions of x and t while the ‘depth’ H 
is a given function which depends only on x. Subscripts denote partial derivatives. In 
(1) we are using a notation derived from gas dynamics because of the analogy between 
our problem and the flow of a compressible gas in one direction with adiabatic index 
y = 2 (Stoker 1957). See also appendix 1. 

The introduction of potentials into this problem rests on the following observation. 
Let us consider the one-forms 

U ,  + uu, + 2cc, = H,, 2c, + 2 uc, + cu, = 0 ,  

a = U dx-($u2+ c 2 -  H )  dt, w = c2(dx - U dt) ( 2 4  b )  

and note that the conditions for them to be closed, 

d a  =0 ,  d o  =0 ,  

are equivalent to equations (1). Then from (3) we have, locally, using PoincarC’s lemma, 

a =d@, w = d q ,  (4% b )  
where @ and q are 0-forms, i.e. scalars which will be called potentials. From (2) and 
(4) we obtain 

@, = U, @ I  = - ! U ’ -  c 2 +  H, (5a,  b )  

(5G 4 Tx = c 2 ,  2 9, = -uc , 

and we can check that equations (1) are the integrability conditions of these equations. 
In ( 5 a )  we find the definition of the velocity potential. From (5) it follows that 

( 6 a ,  b )  
which are coupled, first-order, nonlinear partial differential equations satisfied by the 
potentials. Differentiation of equations (6) with respect to t or x results either in 
identities or the original equations ( I ) ,  and this remains true if in addition we introduce 
arbitrary constants into the right-hand sides of equations (6). Equation (6a)  is 
Bernoulli’s integral. 

Equations (1) and (6) are two systems of nonlinear partial differential equations 
describing the same phenomenon. In the first case we employ the traditional variables 
of fluid dynamics while in the latter potentials are used to write the equations of surface 
waves in shallow water. The connection between the two sets of variables is given by 
equations (5) for which (1) and (6) are the integrability and compatibility conditions. 

@ + 40 : + q, = H, Y f + @ x Y ,  =o ,  
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3. Variational principle 

The potentials @ and 9 which we have introduced in (4) can be used to  obtain equations 
( 1 )  for  shallow water waves f rom a variational principle. For this purpose we consider 

I =  2 d x d t ,  ( 7 )  i 6I=O,  

where 

2, = @ f 9 x + 9 , @ x + @ ~ 9 x + 9 ~ - 2 9 x H  (8) 

is the  Lagrangian density. From (7) and (8) variation with respect t o  @ and 9 yields 
equations (1) upon using (5). H is considered to  be a given function which we d o  not 
vary. In contrast t o  the  earlier variational principle of Luke, the  domain of integration 
of the action can now be chosen arbitrarily. 

W e  shall now cast this variational principle into Hamiltonian form. The  Lagrangian 
(8)  has the interesting property that it depends linearly on the velocities @,, Yp This 
fact is of crucial importance in passing to  a Hamiltonian formulation. Thus we find 
that the canonical momenta 

n, = px, n, = @, (9) 
cannot be inverted for the velocities. Therefore there are constraints and we need to  
use Dirac’s theory to  obtain the canonical formalism for this degenerate system. W e  
start with the definition of the constraints 

c1= n, - = 0, c* = n, - @ = 0 ,  ( l o a ,  b )  

[@(XI, n,(x’)l= S(X - X I  [WX), n,(x’)l= 6(x-x’ ) ,  ( 1 1 )  

where = O  stands for ‘weakly zero’. Using the canonical relations 

we find that the Poisson brackets of the constraints a re  given by 

with 6 denoting the Dirac delta function. Hence the constraints a re  second class. The  
total Hamiltonian of Dirac 

H,= X o d x +  X d x  i i  
consists of a free part 

Xo = n,or +n,qr, - 2 1  = -o:q, - 9: + 2 q x H  

%? = AC, + uCz 

(14)  

( 1 5 )  

and a linear combination of constraints 

where A, U will be determined from the requirement that the Poisson bracket of the  
constraints with the total Hamiltonian must vanish. Direct calculation shows that 

[C,, HT.]= -2 (Qxqx  + U ) ,  = 0, 

[ Cz, HT] = -2(4@: + - H + A ) x  = 0 



4198 Y Nutku 

and we shall fix A, (T by setting the quantities inside the parentheses above equal to  
zero. In this way we have ignored two arbitrary functions of time which could have 
been incorporated into A and (T corresponding to the possibility of including such 
functions on the right-hand sides of equations (6). Collecting these results we find the 
Hamiltonian 

HT= [;o.fY,+H*\Ir,-n~(to2,+Y,-H)-n,cP~.\Ir,] dx. (17) I 
It may be verified that the equations of motion following from this Hamiltonian are 
equations (6) for the potentials and equations (1) governing the propagation of surface 
waves in shallow water. From (9) and ( 5 )  the associated conservation law reduces to 
the statement that the one-form 

B = ; c * ( u ~ + c * - ~ H )  d x - u ~ ~ ( $ u * + c ’ - H )  dt (18) 

is closed. Recently Akyildiz (1982, 1983) has discussed the symplectic structure of 
shallow water waves in the framework of Manin’s formalism (Manin 1978) which is 
related to the existence of this closed one-form. 

4. Alternative formulations 

The coupled partial differential equations for the potentials can be decoupled by 
increasing the order of differentiation. The resulting equations can, in turn, be derived 
from new variational principles which therefore provide alternative formulations of 
surface waves in shallow water. 

For this purpose we note that we can solve for Y, or @, from ( 6 a )  or ( 6 b )  and 
plug the result into ( 6 b )  or (6a)  after differentiating the latter equation with respect 
to x. Thus we find 

which are second-order decoupled quasi-linear partial differential equations. Either 
(19) or (20) is equivalent to equations (6) in that once a solution to (19) or (20) is 
known the full solution can be constructed by quadratures. These equations can also 
be obtained from variational principles. We can verify that the action constructed 
from the Lagrangians 

yields (19) and (20) respectively. Once again, there is no variation with respect to 
the depth function H. The Hamiltonians for Lf2 and Lf3 can be obtained readily. 

5. Conclusion 

The subject of surface waves in shallow water is a time-honoured one. Since the 
celebrated work of Riemann in 1859 the method of characteristics has provided us 



Canonical formulation of shallow water waves 4199 

with a very successful approach to this system of equations. Yet it is only recently 
that variational formulations for  surface waves have been given. In this paper a new 
approach uses two potentials for long waves in shallow water, the integrability condi- 
tions for these potentials a re  the shallow-water equations of motion and for consistency 
the potentials satisfy a pair of coupled nonlinear partial differential equations. It is 
necessary to use both these potentials in order to construct a variational principle 
which requires no  restrictions on the domain of integration of the action. This is the 
important advantage of the new variational principle. The new Lagrangian is, however, 
degenerate and we had to  use Dirac's theory of constraints t o  cast it into canonical 
form. The resulting Hamiltonian is expressed very simply in terms of the potentials 
and their conjugate momenta. It will be most interesting to study the evolution of 
Cauchy data according to this Hamiltonian; indeed, we may readily expect the  new 
Hamiltonian to play a most important role in understanding the dynamics of surface 
waves in shallow water with an arbitrarily shaped bottom. 
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Appendix 1. Gas dynamics 

The equations of gas dynamics can be formulated using potentials in a fashion similar 
to the equations of shallow water waves. These equations a re  

DER' = 0 ( A l . l a )  

where E =*l ,  

D' = a / a t + ( u + & c ) a / a X  (Al . lb )  

and 

R E  = U + ~ E C / (  y -  1) ( A l . l c )  

are the Riemann invariants. As we mentioned earlier, for y = 2, H = 0 the two problems 
coincide. Equations ( A l . l )  can be recognised as the conditions for the differential 
one-forms 

( A 2 . l ~ )  

= c'/'y-l'(dx- U d t )  (A2.1b) 

to be closed. Once again, using Poincark's lemma, we can introduce the potentials @ 
and * through equations (4). Then we find 

(I = U d x  - [$U' + ( y - 1) - I  c'] dt, 

which results in 

(A3. la ,  b) 

(A1.3c, d )  

Q,+;@f+(y-l)-'\Y:-' =o,  Y r + o X q x  =o.  (A1.4a, b) 



4200 Y Nutku  

We can verify that (Al .1 )  and (A1.4) are the integrability and compatibility conditions 
for (A1.3). From (A1.4) we can obtain decoupled equations for the potentials 

~ , r r + 2 ~ x ~ x r  +[(r- 1)Qr + i ( y +  1 ) Q . 2 , I Q x x  = o ,  (A1.5) 

q ~ * r r - 2 * x * ~ q x ~ + ( q ~ - * Z + ' ) q x x  =o ,  (A1.6) 

along the same lines as before. These equations can be derived from a variational 
principle with the Lagrangians 

(A1.7) 

(A1.8) 

(A1.9) 

respectively. The Hamiltonian formulation of Y s  and Y6 is straightforward while in 
the case of Y4 we can again use Dirac's theory to obtain the Hamiltonian density 

9 4  = QrqX +*,a), +Q2,qx + [ 2 / y ( y -  l)]9Z, 

Y5 = [ ( y - 1) /  y]( or + $0.2,) y ' ( y - l ) ,  

.Lf6 = $q ;"U; - [ y( y - l)]-'Y ;, 

(A1.lO) 

where the definition of momenta is given by (9).  

Appendix 2 

We shall now investigate the invariance properties of the equations satisfied by the 
potentials in order to construct exact solutions. Let us first list these scale transforma- 
tions. Equations (6) are invariant under the change 

Q, + .pa, q +  a 3 / 2  P q ?  H + aH, x + a "'px ,  t + P t ,  (A2.1) 

where a and p are arbitrary constants. Further, the scale transformations leaving (19) 
and (20) invariant are given by 

a)+@, t+a' t ,  x +  ffx, H + a-*H, (A2.2) 
and 

q+q, t + f f 3 t t ,  x + a 2 x ,  H + a-'H (A2.3) 

respectively. 
From (A2.1) it is evident that for H = 0 there will be a solution of the form Q, - x 2 / t  

and 9 - x3 /  t 2 .  This turns out to  be the well known simple wave solution. Another 
solution of (6) follows by considering ,8 = 1 in (A2.1).  In  this case we can allow for 
a quadratically varying depth function and all the space dependences of the potentials 
are fixed. If we further start with the ansatz 

Q, = t( w/ w ) x 2 ,  Y = x3/ w 3 ,  H = hx', (A2.4) 
where w is a function of t alone, a dot denotes a time derivative and h is a constant, 
then equations (6) reduce to a single equation 

(A2.5) 

which is Newton's equation for a Kepler harmonic oscillator problem. It admits the 
first integral 

(A2.6) 

w + 6/ w 2  = 2 hw 

$W2-6/ w = h w 2 +  k 
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where k is a constant playing the role of ‘energy’ and we can explicitly integrate 
(A2.6). For k = 0 the results are particularly simple: 

U = 3% coth(xt)x, (A2.7a, b) 

H = H0+$x2x2, ( A 2 . 7 ~ )  

is a solution of (6) where Ho is an arbitrary constant and we have introduced x in 
place of h in (A2.4). Another simple solution of (A2.6) is for the case of a flat bottom 
h = 0 where we find 

(A2.8a) 

= 31/2xw-3/2 (A2.86) 

c = 4% cosech( xt)x, 

U = XW-~/’ [  12( 1 + K W ) ] ” ~ ,  

with 

(12K)”’Kt +[Kw( 1 + K ~ ) ] ” ~ - s i n h ~ ~ ( K w ) ’ / *  ( A 2 . 8 ~ )  

and K = 6 k  is a constant. 
We can also reduce (7) and (8) to ordinary differential equations using scale 

invariant variables indicated by (A2.2), (A2.3). In this way we could also consider 
depth functions H - x - ~  and x-’ respectively. But the results obtained by this method 
are too complicated to warrant reproduction here. 
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